Low-Valent Titanium Reductive Elimination : **a Direct and Highly Stereoselective Synthesis of Vitamin A Aldehyde.**

Guy Solladié* and Valérie Berl

Ecole Européenne des Hautes Etudes des Industries Chimiques Laboratoire de Stéréochimie associé au CNRS, 1 Rue Blaise Pascal. F-67008 Strashourg France

Abstract : It was shown that the low-valent titanium reductive elimination could be carried out in presence of a thioacetal group. An application to the synthesis of vitamin A aldkhyde is described

Low valent titanium, readily available by reduction of titanium trichloride with lithium aluminium hydride, was shown to be a powerful synthetic agent allowing the formation of a diene by reductive elimination of an allylic diol¹. We have described already a highly stereoselective synthesis of the E, E-1,3-diene central unit of vitamin A and 13 -cis retinol² from the corresponding allylic diol.

The reaction mechanism involves, at least in the first step, a one electron transfer from the titanium **Surface.**

We report in this paper the application of this reaction to the preparation of vitamin A aldehyde, as shown on the retrosynthetic scheme. The aldehyde function in the starting allylic diol 2 had to be protected because of its sensitivity to electron transfer as shown by the pionneering work of MC Murry³ who described the carbony¹¹ reductive coupling to olefin monitored by $Ti(0)$. We chose a thioacetal group as protecting group. It is known also that the C-S bond can be broken by a one electron transfer reaction but we expected that the competition would be in favor of the reductive elimination of the allylic diol.

The allylic diol 2 was readily prepared from the well-known propargylic alcohol 3 derived from ßionone². Condensation of the Grignard derivative of 3 with the C₅ aldehyde $4⁴$ gave propargylic diol 5 in 73% yield. Triple bond reduction with LiAlH₄ afforded the trans allylic diol 2^5 in 70% yield as a diastereomeric mixture. The reductive elimination was carried out in THF at room temperature for 3h using a 2 : 1 LiAlH₄ : TiCl₃ mixture. Only one compound was isolated in 60% yield (after chromatography). This was shown by ¹H NMR to be the all-trans isomer of retinal thioacetal⁶. The stereochemistry of compound 1 was determined by ¹H NMR: a 16 Hz coupling constant between H-7 and H-8 and a 15 Hz one between H-11 and H-12 confirm the trans configuration. The ^{13}C chemical shifts of Me-18, Me-19 and Me-20 are totally consistent with an all-trans structure, as shown by the corresponding literature values⁸ of chemical shifts for all the isomeric retinals (Table 1). Finally NOE experiments gave supplementary evidence : irradiation of $CH₃$ -19 and $CH₃$ -20 (having the same chemical shift) lead to a 15% NOE on H-15 and a 7% NOE on H-7 and H-l 1.

 14

 $\frac{3}{\text{OH}}$

 $2(70%)$

1 (all-trans) (60%)

`18

Retinal $(90\%$, all trans / 13- cis = $93/7$)

The hydrolysis of the thioacetal was attempted with many different reagents : mercury salts, oxidizing agents (NBS, I₂, NCS-AgNO₃, SO₂Cl₂), alkylating agents (MeI, Et₃OBF₄). In all these cases we observed the formation of degradation products as well as 20 to 30% of 13-cis retinal resulting from an isomerization of the tenninal double bond. Finally, we have been able to avoid almost completely the double bond isomerization (7%) and to get all-trans retinal in 90% yield in using Omesitylenesulfonyl hydroxylamine7 (MSH), a sulfur aminating reagent which allowed to carry out the reaction at -95°. All-trans retinal and 13-cis retinal were identified from the ¹H and ¹³C NMR spectra already described in the literature8.

Acknowledgements : We thank 1'OREAL for supporting this work and for a scholarship to one of us (VB).

References

- 1) Walbotsky H.M., Wust H.H., J. Am. *Chem. Sot.* 5807-5808,104 (1982)
- 2) Solladie G., Girardin A., Lang G.,J. Org. *Chem.* 2620-2628,54 (1989)
- 3) MC Murry J. E., Fleming M. P., *J, Am, Chem. Sot. 96,4708-4709, (1974)*
- 4) Solladié G., Berl V., Synlett, 795, (1991)
- 5) ¹H NMR of 2 (200MHz, CDCl₃) : δ : 0.97 (s, 2x3H, Me-16 and Me-17) ; 1.42 (s, 3H, Me-18) ; 1.42-1.64 (m, 2x2H, CH₂-2 and CH₂-3) ; 1.64 (s, 3H, Me-19) ; 1.71 (d, 3H, J=1Hz, Me-20) ; 1.95 (t, 2H, CH₂-4) ; 1.79-2.17 (m, 2H, CH₂-15") ; 2.75-2.87 (m, 2H H_{eq}-15') ; 2.87-3.01 (m, 2H, H_{ax}-15') ; 4.55 (d, lH, J=6Hz, H-12) ; 4.87 (d, lH, J=lOHz, H-15) ; 5.51 (8, lH, J=16Hz, H-7) ; 5.51 **(dq,** 1H J=lOHz, J=lHz, H-14) ; 5.66 (dd, lH, J=6Hz, J=lSHz, H-11) ; 5.90 (dt, lH, J=lHz, J=lSHz, H-10) ; 6.05 (d, lH, J=l6Hz, H-8).
- 6) m. p. 108-110°C ; ¹H NMR (CDCl₃, 200 MHz) : δ : 1,03 (s, 2x3H, Me-16 and Me-17) ; 1,44-1,66 (m, 2x2H, CH₂-2 and CH₂-3) ; 1, 72 (s, 3H, Me-18) ; 1,82-2,18 (m, 2H, CH₂-15") ; 1,95 (s, 2x3H, Me-19 and Me-20) ; 2,02 (t, 2H, J=6Hz, CH₂-4) ; 2,84 (m, 2H, H_{eq}-15') ; 2.98 (m, 2H, H_{ax} 15') ; 5.02 (d. lH, J=lOHz, H-15) ; 544 (d, lH, J=lOHz, H-14) ; 6,09 (d, lH, 5=llHz, H-10) ; 610 (d, lH, J=l(iHz, H-7) ; 6.20 (d, lH, J=16Hz, H-8) ; 6,24 (d, lH, J=15Hz, H-12) ; 6.64 (dd, lH, J=llHz, J=lSHz. H-11).
- 7) Tamura Y., Sumoto K., Fuju S., Satoh H., Ikada M. , Synthesis 312 (1973)
- 8) Liu R.S.H., Asato A.E. , *Tetrahedron* 40 , 1931-1969, (1984)

(Received in France 20 March 1992)